9-3 day 1 Taylor's Theorem

Learning Objectives:

I can use a Taylor polynomial to approximate the value of a function at a given point.

I can use the Lagrange error bound to determine the error associated with using a Taylor (or MacLaurin) polynomial to make an approximation. Ex1. Given the function f(x)=cos(x)

a.) Find the 4th degree Taylor polynomial for f(x) centered at x=0.

b.) Use this 4^{th} degree Taylor polynomial to approximate f(1/2)

c.) Find the error associated with using a 4th degree Taylor polynomial to approximate f(1/2).

								and the second sec
۵) :	Find 4th Scasel - x2 21	Augree + x4 41.+.	Taylor p	elynemial	for fly) can	ntered at	x= 0,	567= (05x
6)	use you	dogree ~ 1-	Taylor (1/2)2 + 2!	Priynomial (1/2)4 4!	to 1981	+ + + + + + + + + + + + + + + + + + +	334 -	48 + J
د)	Find error error	using 422 2 <u>x⁰</u> [6]	degree Fayl	10 pily to (2)*	1 - 3 + Apprex. f(1/2) (excor c	384 =	XY IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	394 247
		4.		u :				

Ex2.

a.) Write the terms for the Taylor series for f(x)=ln(x) centered at x=1.

b.) Use the 3^{rd} degree Taylor Polynomial to approximate the value of f(3/2)

b.) Determine the error associated with making this approximation.

c.) Find the exact error.

9-3 day 1 BC Calc (3_6_15-3-11_15).notebook

Ex1. a) Find the 3rd degree Taylor folynomial
for Inx centered at a=1
$$f(x) = \ln x$$
 $f(i) = 0$
 $f'(x) = \frac{1}{2} + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^3 + \frac{1}{2} (x-i)^2 + \frac{1}{2} (x-i)^3 + \frac{1}$

a.) Find the 3rd degree Taylor polynomial for f(x) centered at x=0.

b.) Use this 3^{rd} degree Taylor polynomial to approximate f(1/2)

c.) Find the error associated with using a 3rd degree Taylor polynomial to approximate f(1/2).

Taylor's Theorem

If f(x) has derivatives of all orders and we use an nth degree Taylor polynomial centered at x=a to approximate f(b) as such

$$f(x) = f(a) + f'(a)(b-a) + \frac{f'(a)}{2!}(b-a)^2 + \frac{f''(a)}{3!}(b-a)^3 \dots + \frac{f''(a)}{n!}(b-a)^n$$

then the remainder is given by $R_n(x) = \frac{f^{n+1}(c)}{(n+1)!}(b-a)^{n+1}$

for some c between $a \le c \le b$

Ex4. a.) Write the terms for the Mclaurin series for $f(x)=xe^{x}$ b.) Use the 4th degree McLaurin Polynomial to approximate the value of f(1/4)Write Metaurin Series for Ke. a) $f(x) = x e^{i x}$ x ex -> 1+ 21 x3 X + x 21 31 478 (2)3 (二) ż -2). 6) 0 2 G 37.096 21.

Homework

Pg 500 #1-5 (and find error), 22, 23, 33, 39-41, 43